11,461 research outputs found

    Effect of inflow control on inlet noise of a cut-on fan

    Get PDF
    The control of turbulence and other inflow disturbances in anechoic chambers for static turbofan noise studies was studied. A cut-on, high tip speed fan stage was acoustically tested with three configurations of an inflow control device in an anechoic chamber. Although this was a cut-on design, rotor inflow interaction appeared to be a much stronger source of blade passing tone radiated from the inlet than rotor stator interaction for the 1.6 mean rotor chord separation. Aft external suction applied to the area where the inflow control device joined the inlet produced a further reduction in blade passing tone, suggesting that disturbances in the forward flow on the outside of the inlet were superimposed on the inlet boundary layer and were a significant source of tone noise

    Mean rotor wake characteristics of an aerodynamically loaded 0.5 m diameter fan

    Get PDF
    Mean rotor wake properties at several downstream distances behind the rotor of a loaded 1.2 pressure ratio fan were measured with a cross film anemometer in an anechoic wind tunnel. Mean wake characteristics in the midspan and near tip region were determined utilizing an ensemble averaging technique. The upwash and streamwise components of the velocity behind the rotor indicate a complex structure superimposed on the major velocity defects at a down stream spacing of 0.5 rotor chords. Spectral analysis indicates high levels of the second and fourth harmonics of the blade passage frequency in the midspan region while the blade passage frequency and its second and third harmonic are predominant in the tip region

    Laparoscopic repair of a large interstitially incarcerated inguinal hernia.

    Get PDF
    A 68 year old female presented for elective repair of an abdominal wall hernia. Preoperative CT imaging revealed a right inguinal hernia defect with hernia contents coursing cephalad between the external and internal abdominal oblique muscles. This was consistent with an interstitial inguinal hernia, a rare entity outside of post- traumatic hernias. At operation the hernia contents were reduced laparoscopically. The hernia was then repaired by transitioning to the totally extraperitoneal (TEP) approach using a 15cm X 15cm piece of polyester mesh. The patient had an uneventful recovery. Interstitial hernias are rare, difficult to diagnose and potentially dangerous if left untreated. There is no consensus on the ideal repair of these unique hernias. This represents a minimally invasive repair of an unusual hernia, with a novel approach to diagnose and manage the hernia and its redundant sac

    Noise data from tests of a 1.83 meter (6-ft-) diameter variable-pitch 1.2-pressure-ratio fan (QF-9)

    Get PDF
    Acoustic and aerodynamic data for a 1.83-meter (6-ft.) diameter fan suitable for a quiet engine for short-takeoff-and-landing (STOL) aircraft are documented. The QF-9 rotor blades had an adjustable pitch feature which provided a means for testing at several rotor blade setting angles, including one for reverse thrust. The fan stage incorporated features for low noise. Far-field noise around the fan was measured without acoustic suppression over a range of operating conditions for six different rotor blade setting angles in the forward thrust configuration, and for one in the reverse configuration. Complete results of one-third-octave band analysis of the data are presented in tabular form. Also included are power spectra, data referred to the source, and sideline perceived noise levels

    Acoustic and aerodynamic performance of a variable-pitch 1.83-meter-(6-ft) diameter 1.20-pressure-ratio fan stage (QF-9)

    Get PDF
    Far field noise data and related aerodynamic performance are presented for a variable pitch fan stage having characteristics suitable for low noise, STOL engine application. However, no acoustic suppression material was used in the flow passages. The fan was externally driven by an electric motor. Tests were made at several forward thrust rotor blade pitch angles and one for reverse thrust. Fan speed was varied from 60 to 120 percent of takeoff (design) speed, and exhaust nozzles having areas 92 to 105 percent of design were tested. The fan noise level was at a minimum at the design rotor blade pitch angles of 64 deg for takeoff thrust and at 57 deg for approach (50 percent takeoff thrust). Perceived noise along a 152.4-m sideline reached 100.1 PNdb for the takeoff (design) configuration for a stage pressure ratio of 1.17 and thrust of 57,600 N. For reverse thrust the PNL values were 4 to 5 PNdb above the takeoff values at comparable fan speeds

    Low flight speed acoustic results for a supersonic inlet with auxiliary inlet doors

    Get PDF
    A model supersonic inlet with auxiliary inlet doors and bounday layer bleeds was acoustically tested in simulated low speed flight up to Mach 0.2 in the NASA Lewis 9x15 Anechoic Wind Tunnel and statically in the NASA Lewis Anechoic Chamber. A JT8D refan model was used as the noise source. Data were also taken for a CTOL inlet and for an annular inlet with simulated centerbody support struts. Inlet operation with open auxiliary doors increased the blade passage tone by about 10 dB relative to the closed door configuration although noise radiation was primarily through the main inlet rather than the doors. Numerous strong spikes in the noise spectra were associated with the bleed system, and were strongly affected by the centerbody location. The supersonic inlet appeared to suppress multiple pure tone (MPT) generation at the fan source. Inlet length and the presence of support struts were shown not to cause this MPT suppression

    Acoustic properties of a supersonic fan

    Get PDF
    Acoustic properties of supersonic fan with short blade spa
    corecore